Parameter estimation of gravitational waves with a quantum metropolis algorithm

Author:

Escrig GabrielORCID,Campos RobertoORCID,Casares Pablo A MORCID,Martin-Delgado M AORCID

Abstract

Abstract After the first detection of a gravitational wave in 2015, the number of successes achieved by this innovative way of looking through the Universe has not stopped growing. However, the current techniques for analyzing this type of events present a serious bottleneck due to the high computational power they require. In this article we explore how recent techniques based on quantum algorithms could surpass this obstacle. For this purpose, we propose a quantization of the classical algorithms used in the literature for the inference of gravitational wave parameters based on the well-known quantum walks technique applied to a Metropolis–Hastings algorithm. Finally, we develop a quantum environment on classical hardware, implementing a metric to compare quantum versus classical algorithms in a fair way. We further test all these developments in the real inference of several sets of parameters of all the events of the first detection period GWTC-1 and we find a polynomial advantage in the quantum algorithms, thus setting a first starting point for future algorithms.

Funder

European Union

Ministry of Economic Affairs Quantum ENIA

CAM/FEDER Project

U.S. Army

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference30 articles.

1. Observation of gravitational waves from a binary black hole merger;Abbott;Phys. Rev. Lett.,2016

2. Parameter estimation with gravitational waves;Christensen;Rev. Mod. Phys.,2022

3. Exploring gravitational-wave detection and parameter inference using deep learning methods;DÁlvares;Class. Quantum Grav.,2021

4. Bayesian inference on astrophysical binary inspirals based on gravitational-wave measurements;Röver,2007

5. The astropy project: building an open-science project and status of the v2.0 core package;Price-Whelan;Astron. J.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3