Gravitational decoherence by the apparatus in the quantum-gravity-induced entanglement of masses

Author:

Gunnink Fabian,Mazumdar AnupamORCID,Schut MartineORCID,Toroš MarkoORCID

Abstract

Abstract One of the outstanding questions in modern physics is how to test whether gravity is classical or quantum in a laboratory. Recently there has been a proposal to test the quantum nature of gravity by creating quantum superpositions of two nearby neutral masses, close enough that the quantum nature of gravity can entangle the two quantum systems, but still sufficiently far away that all other known Standard Model interactions remain negligible. However, preparing superposition states of a neutral mass (the light system) requires the vicinity of laboratory apparatus (the heavy system). We will suppose that such a heavy system can be modelled as another quantum system; since gravity is universal, the lighter system can get entangled with the heavier system, providing an inherent source of gravitational decoherence. In this paper, we will consider a toy model composed of two light and two heavy quantum oscillators prepared in the motional ground state, forming pairs of probe-detector systems, and study under what conditions the entanglement between two light systems evades the decoherence induced by the heavy systems. We conclude by estimating the decoherence in the proposed experiment for testing the quantum nature of gravity.

Funder

Marko Toroš

Anupam Mazumdar

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference47 articles.

1. The confrontation between general relativity and experiment;Will;Living Rev. Relativ.,2014

2. Observation of gravitational waves from a binary black hole merger;Abbott;Phys. Rev. Lett.,2016

3. Quantum gravity, effective fields and string theory;Bjerrum-Bohr,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3