Abstract
Abstract
It was shown recently in (Bao N et al 2019 Class. Quantum Grav.
36 185002), building on work of Alexakis, Balehowksy, and Nachman (Alexakis S et al 2017 arXiv:1711.09379), that the geometry of (some portion of) a manifold with boundary is uniquely fixed by the areas of a foliation of two-dimensional disk-shaped surfaces anchored to the boundary. In the context of AdS/CFT, this implies that (a portion of) a four-dimensional bulk geometry can be fixed uniquely from the entanglement entropies of disk-shaped boundary regions, subject to several constraints. In this note, we loosen some of these constraints, in particular allowing for the bulk foliation of extremal surfaces to be local and removing the constraint of disk topology; these generalizations ensure uniqueness of more of the deep bulk geometry by allowing for e.g. surfaces anchored on disconnected asymptotic boundaries, or HRT surfaces past a phase transition. We also explore in more depth the generality of the local foliation requirement, showing that even in a highly dynamical geometry like AdS-Vaidya it is satisfied.
Funder
Computational Science Initiative, Brookhaven National Laboratory
U.S. Department of Defense
National Institute of Standards and Technology
Natural Sciences and Engineering Research Council of Canada
Simons Foundation
Division of Physics
U.S. Department of Energy
Subject
Physics and Astronomy (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献