Discrete bulk reconstruction

Author:

Aaronson Scott,Pollack JasonORCID

Abstract

Abstract According to the AdS/CFT correspondence, the geometries of certain spacetimes are fully determined by quantum states that live on their boundaries — indeed, by the von Neumann entropies of portions of those boundary states. This work investigates to what extent the geometries can be reconstructed from the entropies in polynomial time. Bouland, Fefferman, and Vazirani (2019) argued that the AdS/CFT map can be exponentially complex if one wants to reconstruct regions such as the interiors of black holes. Our main result provides a sort of converse: we show that, in the special case of a single 1D boundary divided into N “atomic regions”, if the input data consists of a list of entropies of contiguous boundary regions, and if the entropies satisfy a single inequality called Strong Subadditivity, then we can construct a graph model for the bulk in linear time. Moreover, the bulk graph is planar, it has O(N2) vertices (the information-theoretic minimum), and it’s “universal”, with only the edge weights depending on the specific entropies in question. From a combinatorial perspective, our problem boils down to an “inverse” of the famous min-cut problem: rather than being given a graph and asked to find a min-cut, here we’re given the values of min-cuts separating various sets of vertices, and need to find a weighted undirected graph consistent with those values. Our solution to this problem relies on the notion of a “bulkless” graph, which might be of independent interest for AdS/CFT. We also make initial progress on the case of multiple 1D boundaries — where the boundaries could be connected via wormholes — including an upper bound of O(N4) vertices whenever an embeddable bulk graph exists (thus putting the problem into the complexity class NP).

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3