Convolutional neural networks for the classification of glitches in gravitational-wave data streams

Author:

Fernandes TiagoORCID,Vieira Samuel,Onofre AntonioORCID,Calderón Bustillo JuanORCID,Torres-Forné AlejandroORCID,Font José AORCID

Abstract

Abstract We investigate the use of convolutional neural networks (including the modern ConvNeXt network family) to classify transient noise signals (i.e. glitches) and gravitational waves (GWs) in data from the Advanced LIGO detectors. First, we use models with a supervised learning approach, both trained from scratch using the Gravity Spy dataset and employing transfer learning by fine-tuning pre-trained models in this dataset. Second, we also explore a self-supervised approach, pre-training models with automatically generated pseudo-labels. Our findings are very close to existing results for the same dataset, reaching values for the F1 score of 97.18% (94.15%) for the best supervised (self-supervised) model. We further test the models using actual GW signals from LIGO-Virgo’s O3 run. Although trained using data from previous runs (O1 and O2), the models show good performance, in particular when using transfer learning. We find that transfer learning improves the scores without the need for any training on real signals apart from the less than 50 chirp examples from hardware injections present in the Gravity Spy dataset. This motivates the use of transfer learning not only for glitch classification but also for signal classification.

Funder

Ministerio de Ciencia e Innovación

Agencia Estatal de Investigación

Fundação para a Ciência e a Tecnologia

EU Horizon 2020 research and innovation

European Horizon Europe staff exchange

'la Caixa’ Foundation

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using deep learning to denoise and detect gravitational waves;Physical Review D;2024-09-06

2. Enhancing the rationale of convolutional neural networks for glitch classification in gravitational wave detectors: a visual explanation;Machine Learning: Science and Technology;2024-07-26

3. Gravity Spy: lessons learned and a path forward;The European Physical Journal Plus;2024-01-30

4. Machine Learning Applications in Gravitational Wave Astronomy;Compact Objects in the Universe;2024

5. QGFORMER: Quantum-Classical Hybrid Transformer Architecture for Gravitational Wave Detection;2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3