Neural network time-series classifiers for gravitational-wave searches in single-detector periods

Author:

Trovato AORCID,Chassande-Mottin E,Bejger MORCID,Flamary RORCID,Courty N

Abstract

Abstract The search for gravitational-wave (GW) signals is limited by non-Gaussian transient noises that mimic astrophysical signals. Temporal coincidence between two or more detectors is used to mitigate contamination by these instrumental glitches. However, when a single detector is in operation, coincidence is impossible, and other strategies have to be used. We explore the possibility of using neural network classifiers and present the results obtained with three types of architectures: convolutional neural network, temporal convolutional network, and inception time. The last two architectures are specifically designed to process time-series data. The classifiers are trained on a month of data from the LIGO Livingston detector during the first observing run (O1) to identify data segments that include the signature of a binary black hole merger. Their performances are assessed and compared. We then apply trained classifiers to the remaining three months of O1 data, focusing specifically on single-detector times. The most promising candidate from our search is 4 January 2016 12:24:17 UTC. Although we are not able to constrain the significance of this event to the level conventionally followed in GW searches, we show that the signal is compatible with the merger of two black holes with masses m 1 = 50.7 8.9 + 10.4 M and m 2 = 24.4 9.3 + 20.2 M at the luminosity distance of d L = 564 338 + 812 Mpc .

Funder

Horizon 2020 Framework Programme

European Cooperation in Science and Technology

Narodowe Centrum Nauki

National Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3