A new semiconducting full Heusler Li2BeX (X = Si, Ge and Sn): first-principles phonon and Boltzmann calculations

Author:

Bouadi Abed,Lantri Tayeb,Mesbah Smain,Houari Mohammed,Ameri Ibrahim,Blaha Lamia,Ameri Mohammed,Al-Douri YORCID,El-Rehim A F Abd

Abstract

Abstract The Full Potential-Linearized Augmented Plane Wave (FP-LAPW) is employed into density functional theory (DFT) within WIEN2k package to explore and investigate the thermoelectric, mechanical, electronic and structural properties of full-Heusler alloys Li2BeX (X = Si, Ge and Sn) were explored. The exchange and correlation potential are treated by different approximations: the generalized gradient approximation with Perdew–Burke–Ernzerhof scheme (GGA-PBE) and Tran–Blaha modified Becke–Johnson (mBJ-GGA). The results achieved for the electronic properties show that these compounds are semiconductor in nature with an indirect band gap, of values: 0.60 eV, 0.55 eV and 0.24 eV for Li2BeSi, Li2BeGe and Li2BeSn, respectively. In addition, these materials are mechanically stable owing to the fact that the conditions required for this mechanical stability satisfy Born’s criteria, and are of a brittle nature due to the calculated values of the ratios (B/G), on the other hand, these compounds are dynamically stable due to the non-presence of negative frequencies following the detailed study of phonons. These compounds are characterized by a high figure of merit (ZT) (close to unity) and high Seebeck coefficient (S), making them promising candidates for thermoelectric applications.

Funder

King Khalid University

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3