First principles study on phosphorus or boron doping in si nanocrystals with various sizes embedded in SiO2 matrix

Author:

Han Junnan,Li DongkeORCID,Sun Teng,Chen Jiaming,Wang Yuhao,Pi XiaodongORCID,Li Wei,Xu Ling,Xu JunORCID,Chen Kunji

Abstract

Abstract Doping in Si nanocrystals (Si NCs) is an interesting topic since the doping behaviors in the nanoscale are quite complicated compared with the case in bulk Si. In our present work, we use the first-principles calculation to study Phosphorus (P) or Boron (B) doping in Si NCs with the size of 2–8 nm embedded in SiO2 matrix by taking into account the existence of dangling bonds on the interfacial region. It is found that both P and B impurities tend to stay at the interfacial region to passivate the dangling bonds when the dot size is as small as 2 nm. However, P impurities exhibit the possibility to occupy the inner sites of Si NCs while B impurities are more difficult to be introduced into Si NCs due to the large formation energy. Our detailed study suggests that P or B impurities preferentially stay at the intermediate sites between Si and oxygen to form stable bonding configurations. With increasing the dot size from 2 nm to 8 nm, both P and B impurities can enter into the Si NCs more easily due to the relaxation of stress in the larger-sized Si NCs. Our theoretical results are in good agreement with the experimental observations.

Funder

NSF

NSFC

Key R&D program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3