Effect of the electrical double layer on the electrical conductivity of suspensions

Author:

Sushko M YaORCID,Balika S DORCID

Abstract

Abstract We study the role of the electrical double layer (EDL) in the formation of the quasistatic electrical conductivity of suspensions of nanosized particles. A suspension is viewed as a system of hard-core–penetrable-shell particles. The shells are electrically inhomogeneous, with a radially symmetrical conductivity profile. It is assumed that the real microstructure of the suspension can be reflected in terms of this profile and also the rule of dominance for overlapping regions that the local conductivity in the system is determined by the nearest particle. Using our earlier rigorous results for systems with this morphology, we derive general integral relations for the desired conductivity which incorporate the effect of the EDL and make it possible to look into the contributions from its different parts and parameters. Specific features, internal consistency, and flexibility of the model are demonstrated by further elaborating it to describe experimental data for latex suspensions in aqueous electrolyte solutions with high ionic strength.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference38 articles.

1. Conduction Characteristics of the Lithium Iodide-Aluminum Oxide Solid Electrolytes

2. Composite Electrolytes

3. Composite solid ion conductors;Vagner,1989

4. Physics of inhomogeneous inorganic materials

5. Composite polymeric electrolytes;Wieczorek,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3