Validity of Brink-Axel Hypothesis for calculations of allowed stellar weak rates of heavy nuclei

Author:

Farooq Fakeha,Nabi Jameel-UnORCID,Shehzadi RamoonaORCID

Abstract

Abstract The knowledge of beta-decay transitional probabilities and Gamow-Teller (GT) strength functions from highly excited states of nuclides is of particular importance for applications to astrophysical network calculations of nucleosynthesis in explosive stellar events. These quantities are challenging to achieve from measurements or computations using various nuclear models. Due to unavailability of feasible alternatives, many theoretical studies often rely on the Brink-Axel (BA) hypothesis, that is, the response of strength functions depends merely on the transition energy of the parent nuclear ground state and is independent of the underlying details of the parent state, for the calculation of stellar rates. BA hypothesis has been used in many applications from nuclear structure determination to nucleosynthesis yield in the astrophysical matter. We explore here the the validity of BA hypothesis in the calculation of stellar beta-decay (BD) and electron capture (EC) weak rates of fp- and fpg-shell nuclides for GT transitions. Strength functions have been computed employing the fully microscopic proton-neutron QRPA (quasi-particle random-phase approximation) within a broad density, ρY e = (10-1011) [g cm−3], and temperature, T = (1−30) [GK], grid relevant to the pre-collapse astrophysical environment. Our work provides evidence that the use of the approximation based on the BA hypothesis does not lead to reliable calculations of excited states strength functions under extreme temperature-density conditions characteristic of presupernova and supernova evolution of massive stars. Weak rates obtained by incorporating the BA hypothesis in the calculation of strength functions substantially deviate from the rates based on the state-by-state microscopically calculated strength functions. Deviation in the two calculations becomes significant as early as neon burning phases of massive stars. The deviation in the calculation of BD rates is even more pronounced, reaching up to three orders of magnitude.

Funder

Higher Education Commission, Pakistan

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3