Impact of the Brink-Axel Hypothesis on Unique First-Forbidden β-transitions for r-process nuclei

Author:

Farooq Fakeha,Nabi Jameel-UnORCID,Shehzadi RamoonaORCID

Abstract

Abstract Key nuclear inputs for the astrophysical r-process simulations are the weak interaction rates. Consequently, the accuracy of these inputs directly affects the reliability of nucleosynthesis modeling. Majority of the stellar rates, used in simulation studies, are calculated invoking the Brink-Axel (BA) hypothesis. The BA hypothesis assumes that the strength functions of all parent excited states are the same as for the ground state, only shifted in energies. However, BA hypothesis has to be tested against microscopically calculated state-by-state rates. In this project we study the impact of the BA hypothesis on calculated stellar β--decay and electron capture rates. Our investigation include both Unique First Forbidden (U1F) and allowed transitions for 106 neutron-rich trans-iron nuclei ([27, 77] ≤ [Z, A] ≤ [82, 208]). The calculations were performed using the deformed proton-neutron quasi-particle random-phase approximation (pn-QRPA) model with a simple plus quadrupole separable and schematic interaction. Waiting-point and several key r-process nuclei lie within the considered mass region of the nuclear chart. We computed electron capture and β--decay rates using two different prescriptions for strength functions. One was based by invoking BA hypothesis and the other was the state-by-state calculation of strength functions, under stellar density and temperature conditions ([10, 1] ≤ [ρYe(g/cm3), T(GK)] ≤ [1011, 30]). Our results show that BA hypothesis invoked U1F β-− rates are overestimated by 4–5 orders of magnitude as compared to microscopic rates. For capture rates, more than 2 orders of magnitude difference was noted when applying BA hypothesis. It was concluded that the BA hypothesis is not a reliable approximation, especially for the β--decay forbidden transitions.

Funder

Higher Education Commission, Pakistan

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3