Chaotic image encryption based on spiral traversal and finite field bidirectional diffusion

Author:

Huang LilianORCID,Chai Bin,Xiang Jianhong,Zhang Zefeng,Liu Jin

Abstract

Abstract In this paper, a new sinusoidal cascade chaotic map model is proposed, which constructs chaotic system by sinusoidal cascade of two identical 1D chaotic maps. This model can generate 1D chaotic system with wider parameter range and wider chaotic region. To verify its application in image encryption, a chaotic image encryption algorithm based on spiral traversal and finite field bidirectional diffusion is proposed. The pseudo-random sequences generated by three kinds of 1D chaotic maps improved by the sinusoidal cascade chaotic map model are used as the ciphers of the cryptosystem. Among them, SHA-256, SHA-512 and plain image are combined to generate the initial value of the system. The experimental results and security analysis show that the encryption algorithm designed in this paper can effectively resist exhaustive attack, differential attack, noise attack and so on, and the proposed model has superior performance in encryption speed and security.

Funder

Fundamental Research Funds for the Central Universities

Heilongjiang Province Natural Science Foundation Joint Guidance Project

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3