Complex dynamics analysis and feedback control for a memristive switched chaotic system

Author:

Shi Shuaishuai,Du Chuanhong,Liu LicaiORCID

Abstract

Abstract To enrich the chaos theory and improve the complex characteristics of the system. A switched chaotic system is proposed by connecting the memristor to the Rössler system through a time-switching function in this paper. Under the action of the switching function, the system can switch between two subsystems with different structures. The switched system has multiple coexisting attractors for different initial values and exhibits chaotic and quasi-periodic offset boosting, as well as different transient transition behaviors. It is interesting to note that besides the initial-dependent offset boosting, there are three other types of offset boosting behaviors, of which the time-based switching function, combined constant, and switching function offset boosting have not been found in other systems. Since time-based offset boosting does not require the introduction of system variables, it can reduce system design complexity and circuit cost. The novel offset boosting provides a new method for realizing offset boosting behaviors and multi-attractors in chaotic systems. In addition, the switching function can make the attractor self-replicate and produce intermittent chaos, and transient transition behavior also occurs in a short time during the intermittent process. These findings indicate that the switched system has more complex dynamics than either of the two subsystems. Both analog and DSP digital circuits confirm the physical feasibility of the novel offset-boosting behavior. Finally, a feedback controller was designed to further implement the switched system in engineering applications. Theoretical analysis, Matlab numerical calculations, and Multisim circuit simulation show that the state variables of each subsystem can be well controlled under the action of the feedback controller.

Funder

Youth talent project of Guizhou Department of Education

Guizhou Department of Education

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3