Atom pair bond approach: an efficient method for determining the lattice parameters of NiAs-type compounds and comparative analysis with computational databases

Author:

Bhattacharya Devaparna,Akhil T,Bai V SeshuORCID,Rajasekharan TORCID

Abstract

Abstract Comparison of EOS properties such as lattice parameters, bulk modulus, etc calculated by density functional theory (DFT) with experiments is used, in general, to assess the precision reachable in computations, when using different codes and potentials. DFT calculations using a large number of codes and potentials by different groups, have reported excellent precision (0.02 Å) in the lattice parameters of 71 elements. It is of interest to study the precision levels reachable in compounds of hexagonal NiAs type crystal structure, in which a wide range of electrical conductivity and magnetic order are found to occur. In this study, lattice parameters for 42 intermetallic compounds of the NiAs type structure are determined from internal radii using the Atom Pair Bond method. These values are compared with the lattice parameters reported from the high throughput DFT computational techniques such as AFLOW and Materials Project compilations. Precision in lattice parameters obtainable in the three methods is assessed in comparison with those reported from the experiments. Selection of a set of compounds of same crystal structure brings out the role of differences in the electronic structure of elements involved. In the APB method, lattice parameters are obtained by the best-fit equations defined by radii change in a large number of compounds with a particular structure, and do not involve several approximations, unlike in DFT. It is interesting to see that the simple APB approach could estimate lattice parameters with accuracies comparable to DFT methods.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3