Reproducibility in density functional theory calculations of solids

Author:

Lejaeghere Kurt1,Bihlmayer Gustav2,Björkman Torbjörn34,Blaha Peter5,Blügel Stefan2,Blum Volker6,Caliste Damien78,Castelli Ivano E.9,Clark Stewart J.10,Dal Corso Andrea11,de Gironcoli Stefano11,Deutsch Thierry78,Dewhurst John Kay12,Di Marco Igor13,Draxl Claudia1415,Dułak Marcin16,Eriksson Olle13,Flores-Livas José A.12,Garrity Kevin F.17,Genovese Luigi78,Giannozzi Paolo18,Giantomassi Matteo19,Goedecker Stefan20,Gonze Xavier19,Grånäs Oscar1321,Gross E. K. U.12,Gulans Andris1415,Gygi François22,Hamann D. R.2324,Hasnip Phil J.25,Holzwarth N. A. W.26,Iuşan Diana13,Jochym Dominik B.27,Jollet François28,Jones Daniel29,Kresse Georg30,Koepernik Klaus3132,Küçükbenli Emine911,Kvashnin Yaroslav O.13,Locht Inka L. M.1333,Lubeck Sven14,Marsman Martijn30,Marzari Nicola9,Nitzsche Ulrike31,Nordström Lars13,Ozaki Taisuke34,Paulatto Lorenzo35,Pickard Chris J.36,Poelmans Ward137,Probert Matt I. J.25,Refson Keith3839,Richter Manuel3132,Rignanese Gian-Marco19,Saha Santanu20,Scheffler Matthias1540,Schlipf Martin22,Schwarz Karlheinz5,Sharma Sangeeta12,Tavazza Francesca17,Thunström Patrik41,Tkatchenko Alexandre1542,Torrent Marc28,Vanderbilt David23,van Setten Michiel J.19,Van Speybroeck Veronique1,Wills John M.43,Yates Jonathan R.29,Zhang Guo-Xu44,Cottenier Stefaan145

Affiliation:

1. Center for Molecular Modeling, Ghent University, Technologiepark 903, BE-9052 Zwijnaarde, Belgium.

2. Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA (Jülich Aachen Research Alliance), D-52425 Jülich, Germany.

3. Department of Physics, Åbo Akademi, FI-20500 Turku, Finland.

4. Centre of Excellence in Computational Nanoscience (COMP) and Department of Applied Physics, Aalto University School of Science, Post Office Box 11100, FI-00076 Aalto, Finland.

5. Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria.

6. Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.

7. Université Grenoble Alpes, Institut Nanosciences et Cryogénie–Modeling and Material Exploration Department (INAC-MEM), Laboratoire de Simulation Atomistique (L_Sim), F-38042 Grenoble, France.

8. Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), INAC-MEM, L_Sim, F-38054 Grenoble, France.

9. Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

10. Department of Physics, University of Durham, Durham DH1 3LE, UK.

11. International School for Advanced Studies (SISSA) and DEMOCRITOS, Consiglio Nazionale delle Ricerche–Istituto Officina dei Materiali (CNR-IOM), Via Bonomea 265, I-34136 Trieste, Italy.

12. Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany.

13. Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Post Office Box 516, SE-75120 Uppsala, Sweden.

14. Institut für Physik and Integrative Research Institute for the Sciences (IRIS)–Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, D-12489 Berlin, Germany.

15. Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.

16. Center for Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.

17. Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8553, Gaithersburg, MD 20899, USA.

18. Department of Mathematics, Computer Science, and Physics, University of Udine, Via delle Scienze 206, I-33100 Udine, Italy.

19. Institute of Condensed Matter and Nanosciences–Nanoscopic Physics (NAPS), Université Catholique de Louvain, Chemin des Étoiles 8, BE-1348 Louvain-la-Neuve, Belgium.

20. Institut für Physik, Universität Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.

21. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

22. Department of Computer Science, University of California–Davis, Davis, CA 95616, USA.

23. Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019, USA.

24. Mat-Sim Research, Post Office Box 742, Murray Hill, NJ 07974, USA.

25. Department of Physics, University of York, Heslington, York YO10 5DD, UK.

26. Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA.

27. Scientific Computing Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.

28. CEA, DAM, DIF, F-91297 Arpajon, France.

29. Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, UK.

30. Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria.

31. Leibniz‑Institut für Festkörper- und Werkstoffforschung (IFW) Dresden, Post Office Box 270 116, D-01171 Dresden, Germany.

32. Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, D-01069 Dresden, Germany.

33. Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.

34. Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan.

35. Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités–Pierre and Marie Curie University Paris 06, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7590, Muséum National d’Histoire Naturelle, Institut de Recherche pour le Développement (IRD) Unité de Recherche 206, 4 Place Jussieu, F-75005 Paris, France.

36. Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.

37. High Performance Computing Unit, Ghent University, Krijgslaan 281 S9, BE-9000 Ghent, Belgium.

38. Department of Physics, Royal Holloway, University of London, Egham TW20 0EX, UK.

39. ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.

40. Department of Chemistry and Biochemistry and Materials Department, University of California–Santa Barbara, Santa Barbara, CA 93106-5050, USA.

41. Institute for Solid State Physics, Vienna University of Technology, A-1040 Vienna, Austria.

42. Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg.

43. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

44. Institute of Theoretical and Simulational Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China.

45. Department of Materials Science and Engineering, Ghent University, Technologiepark 903, BE-9052 Zwijnaarde, Belgium.

Abstract

A comparison of DFT methods Density functional theory (DFT) is now routinely used for simulating material properties. Many software packages are available, which makes it challenging to know which are the best to use for a specific calculation. Lejaeghere et al. compared the calculated values for the equation of states for 71 elemental crystals from 15 different widely used DFT codes employing 40 different potentials (see the Perspective by Skylaris). Although there were variations in the calculated values, most recent codes and methods converged toward a single value, with errors comparable to those of experiment. Science , this issue p. 10.1126/science.aad3000 ; see also p. 1394

Funder

Research Board of Ghent University

Fond de la Recherche Scientifique de Belgique (FRS-FNRS)

Projet de Recherches (PDR)

Communaute Française de Belgique

Swedish Research Council

Knut and Alice Wallenberg Foundation

Fund for Scientific Research–Flanders (FWO)

U.S. Department of Energy

U.S. NSF

Academy of Finland

Deutsche Forschungsgemeinschaft (DFG)

Einstein Foundation, Berlin

Horizon 2020 research and innovation program

Italian Ministry of Education, Universities, and Research (MIUR)

Engineering and Physical Sciences Research Council (EPSRC)

EPSRC

Swiss National Science Foundation (SNSF)

Austrian Science Fund

Ghent University

FWO

Flemish Government

Walloon Region

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference113 articles.

1. Estimating the reproducibility of psychological science

2. A checklist for photovoltaic research

3. The Seven Sins in Academic Behavior in the Natural Sciences

4. C. Drummond N. Japkowicz W. Klement S. Macskassy “Replicability is not reproducibility: Nor is it good science ” in Proceedings Twenty-Sixth International Conference on Machine Learning L. Bottou M. Littman Eds. (2009); www.csi.uottawa.ca/~cdrummon/pubs/ICMLws09.pdf.

5. A Scientist's Nightmare: Software Problem Leads to Five Retractions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3