Band-stop filter based on tunable Fano resonance and electromagnetically induced transparency in metal-dielectric-metal waveguide coupling systems

Author:

Guo Yiyuan,Huo YipingORCID,Niu Qiqiang,He Qian,Hao Xiangxiang

Abstract

Abstract Metal-dielectric-metal (MIM) waveguide coupling systems based on surface plasmon polaritons (SPPs) are designed and studied. The finite element method is used to simulate the transmission spectra of structures in the whole simulation process. One waveguide coupling system consists of an inverted T-shaped cavity with defect (ITD) and a waveguide with a metal wall. The filter band appears in the transmission spectrum due to the opposite direction of two Fano resonances. The filter band width and the filtering range can be tuned effectively by changing the structure parameters. In this system, the center frequency and bandwidth of the filter band are 1330 nm and 114 nm, respectively. The insertion loss and reflection loss are −1.41 dB and −16.89 dB, respectively. The optimization is carried out on the basis of the first system in order to improve the filtering performance. Optimized waveguide coupling system contains an ITD and a waveguide with a slot cavity. Electromagnetically induced transparency (EIT) and Fano resonance exist simultaneously, and the filter band is induced in the transmission spectrum. In this system, the center frequency and bandwidth of the filter band are 1412 nm and 120 nm, respectively. The insertion loss and reflection loss are −0.50 dB and −37.32 dB, respectively. EIT and Fano resonance can not only be regulated independently, but also be regulated simultaneously by changing the structural parameters. And the intensity of EIT and the width of the filter band can be manipulated with changes of the structural parameters. The transmission response of SPPs propagating in the structure can be adjusted dynamically. Moreover, these novel SPPs optical waveguide structures have good filtering efficiency and can meet different filtering needs. These results show that the proposed systems are promising for filter, slow light device and photonic device integration applications.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3