Hybrid multi-channel electrically tunable bandstop filter based on DAST electro-optical material

Author:

Qi Yunping1,Zhang Shu,Shi Qiang1,Zhao Shiyu1,Zhou Zihao1,Su Mingrui1,Wang Xiangxian2

Affiliation:

1. Northwest Normal University

2. Lanzhou University of Technology

Abstract

Abstract A voltage-tunable hybrid multichannel bandstop filter utilizing a metal-insulator-metal (MIM) waveguide is presented in this work. The unique aspect of this filter is its ability to achieve three narrowband and one broadband filtering functions simultaneously. The filter design comprises two asymmetric composite cavities filled with an organic electro-optical material called 4-dimethylamino-N-methyl-4-toluenesulfonate (DAST). These composite cavities consist of a rectangular cavity combined with an annular cavity. The annular cavity is formed by connecting two rectangular cavities with two semi-elliptical annular cavities. Using the finite element method (FEM), we thoroughly study and analyze the transmission spectrum and magnetic field distribution of the filter. We also delve into the impact of various structural parameters on the transmission spectrum. Our analysis demonstrates that the bandstop filter achieves a remarkable minimum transmittance of 0.02%, 0.29%, and 0.1%, alongside minimum bandwidths of 5 nm, 9 nm, and 25 nm in three narrowband modes, respectively. These modes attain maximum quality factors (Q) of 123.7, 87.1, and 44.2. In the broadband mode, the stopband bandwidth covers 70 nm, and the adjustable range spans from 1695 nm to 2065 nm. The filter's characteristics can be dynamically adjusted by applying a control voltage, introducing a remarkable level of tunability while maintaining stable filter performance. To enhance its performance, we optimize the basic structure, yielding a broadened bandwidth of 238 nm for the broadband mode. This extended bandwidth comes with exceptional electrical tuning characteristics intact. Our proposed voltage-tunable hybrid multichannel bandstop filter presents a versatile solution with significant potential applications in high-density integrated circuits and nano-optics.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3