Performance optimization of high-K GAA-PZT negative capacitance FET MFIS silicon nanowire for low power RFIC and analog applications

Author:

Kumar VivekORCID,Maurya Ravindra KumarORCID,Malvika ORCID,Rawat GopalORCID,Mummaneni Kavicharan

Abstract

Abstract In this article, Gate-All-Around Lead Zirconate Titanate Negative Capacitance (GAA PZT- NCFET) based Silicon Nanowire (SiNW) device architecture is investigated for the RF/Analog applications using Sentauras TCAD simulations. In this study the variation of ferroelectric layer thicknesses (tfe) has been systematically investigated. The proposed device yields higher values of on current, transconductance, cut off frequency, TFP, and Ion/Ioff ratio and lower values of off current, SS and threshold voltage, compared to baseline device. The proposed device delivers Ion, gm, fT, and TFP as 3.38 mA, 9.6 mS, 7.625 THz, and 74.85 THz V−1, respectively which are 220%, 219%, 95% and 259% respectively, higher than the baseline device. Moreover, the Ion/Ioff ratio for the proposed work is 8 × 1013 which is 7.1 × 103 times that of baseline device showing a monumental increment in this ratio. Furthermore, the effect of FE thicknesses on various linearity parameters, higher order harmonics, voltage intercept points (VIP2, VIP3), third order power intercept (IIP3) and third order intermodulation distortion (IMD3) have been investigated thoroughly. The proposed device structure offers lower values of higher order harmonics and higher values of voltage intercept points. Also, the IIP3 and IMD3 have been improved. Therefore, the linearity parameters of the device have been significantly improved when compared to the baseline device. The alluring results have been utilized to optimize the bias point of the presented device. Owing to the improved RF/Analog and linearity performance, the presented device could be utilized for imminent next generation low power RFIC applications.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3