Kelvin–Helmholtz instability in sheared dusty plasma flows including dust polarization and ion drag forces

Author:

Dolai BivashORCID,Prajapati Ram PrasadORCID

Abstract

Abstract Velocity shear driven Kelvin–Helmholtz (K-H) instability has been investigated in an incompressible subsonic sheared dusty plasma with ion drag and dust polarization forces. A three-component dusty fluid model has been formulated in connection with thermal electrons, inertial ions and charged dust grains. Dispersion relation of K-H instability along with dust-ion two-stream instability has been analyzed for a typical astrophysical dusty plasma environment. The magnitude of the polarization force is found to be small compared to the other forces, although it significantly modifies the K-H modes. The simultaneous presence of ion drag and dust polarization forces excites the K-H instability, which in the absence of these forces, is completely suppressed. It is also observed that the dust polarization interaction parameter and the magnitude of the shear velocity increase the growth rate of the K-H instability. The present results can have significant relevance in understanding the development of velocity shear driven K-H instability in some molecular outflows [1], Saturn’s rings [2] etc.

Funder

Indian Space Research Organisation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3