Evolution of surface morphology and helium bubble in tungsten under 40 keV helium ions implantation followed by deuterium plasma exposure

Author:

Xia Tongjun,Wang Zizhao,Jiang Zhenyu,Shi Yongzhi,Wu Jianwei,Ren Xinyu,Zhu Kaigui

Abstract

Abstract Surface morphology and internal microstructure of tungsten (W) pre-implanted by 40 keV mass-separated helium (He) ions with different fluences at room temperature were investigated in this work. The morphology changes of the samples were analyzed almost in situ, by repetitively examined the specified irradiation area which is marked by focused ion beam technology. As the samples were implanted by He ion with a fluence of 6 × 1020 He m−2, no He blisters or other microstructures could be found on the surface. When the fluence reaches 6 × 1021 He m−2, a large number of He blisters with the size of ∼1 μm were observed on the W specimens. For the results of the subsequent deuterium plasma exposure, instead of deuterium-induced blistering, no changes on the W surface which pre-irradiated by He ion irradiation at low fluence (6 × 1020 He m−2). Surprisingly, for He ions pre-implanted W with high fluence (6 × 1021 He m−2), almost all the He blisters were cracked and their lids even peeled off. It could be attributed to the lateral stress caused by subsequent D exposure. Moreover, the size of He bubbles was also increased under subsequent deuterium exposure, suggesting that He atoms can attract D atoms. No deuterium blisters were found on these samples which were pre-implanted with high and low fluences, suggesting that He ion pre implantation can effectively inhibit the surface blistering caused by deuterium exposure.

Funder

National Natural Science Foundation of China

National Magnetic Confinement Fusion Energy Research Project

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3