Temperature-dependent bubble growth under synergistic interactions of hydrogen and helium in tungsten

Author:

Niu Chunjie,Qin Wentao,Suman Siddharth,Ni Weiyuan,Liu Weifeng,Fan Hongyu,Lei Guangjiu,Liu DongpingORCID

Abstract

Abstract A novel theoretical model based on modified diffusion rate equations is proposed to simulate the retention of hydrogen isotopes and the dynamics of bubble growth in tungsten (W) when exposed to simultaneous hydrogen (H) and helium (He) plasma irradiations. Simulation is conducted to assess the influence of temperature as well as simultaneous H and He irradiation at an increasing fluence. Not only to develop a holistic understanding but also to substantiate simulation findings about synergy between H and He plasma irradiation, a W sample is exposed sequentially to H and He plasma at 873 K using the large-power material irradiation experimental system. The topographical changes in the W sample are investigated using atomic force microscopy (AFM) after each plasma irradiation exposure sequence. Simulation results reveal that the ability of a bubble containing both H and He to trap adjacent H/He atoms is primarily governed by their individual partial pressure within the bubble. Furthermore, at elevated temperatures, the synergy between H and He significantly enhances the retention of H isotopes in W. AFM micrographs of the W sample exposed to both H and He plasma irradiation show a severely damaged and locally delaminated layer, absent in the sample exposed only to either H or He, conclusively establishing evidence of synergy between H and He irradiation effects. The average bubble radius computed using the model aligns excellently with experimentally determined values obtained through SEM/AFM analysis. The robustness of the proposed model is also assessed by comparing bubble radius and H isotopes retention at various temperatures with experimental data reported in the literature.

Funder

The National Key R&D Program of China

The Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3