Decrypting the thermal effects on the electric field-induced material formation process on Cr thin films

Author:

Ghosh Swapnendu NarayanORCID,Talukder Santanu

Abstract

Abstract Controlled electrochemical reactions on chromium (Cr) thin films have been employed to create micro- and nano-scale patterns using a scanning probe-based patterning process called electrolithography (ELG). The electrochemical reaction produces a liquid material. The ELG process, being a local anodic oxidation-based technique, is significantly affected by several factors, including various ambient conditions. In this article, we explore the effects of temperature on the said electrochemical reaction-induced liquid material formation process. Keeping other ambient conditions constant, the temperature is varied over a large range, and we observe that a 40 °C change in temperature results in a 20-time change in the radial spread of the liquid region. This observation is thereafter explained by the effect of temperature on three different parameters affecting the rate of electrochemical reaction. Thus, based on this study, we can say that temperature is one of the most crucial parameters which can be used to confine the lateral spread of the formed liquid region and thereby improve the resolution of the patterns created using the ELG technique.

Funder

Indian Institute of Science Education and Research Bhopal

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3