Gradient-based adaptive neural network technique for two-dimensional local fractional elliptic PDEs

Author:

Jha NavnitORCID,Mallik EkanshORCID

Abstract

Abstract This paper introduces gradient-based adaptive neural networks to solve local fractional elliptic partial differential equations. The impact of physics-informed neural networks helps to approximate elliptic partial differential equations governed by the physical process. The proposed technique employs learning the behaviour of complex systems based on input-output data, and automatic differentiation ensures accurate computation of gradient. The method computes the singularity-embedded local fractional partial derivative model on a Hausdorff metric, which otherwise halts the computation by available approximating numerical methods. This is possible because the new network is capable of updating the weight associated with loss terms depending on the solution domain and requirement of solution behaviour. The semi-positive definite character of the neural tangent kernel achieves the convergence of gradient-based adaptive neural networks. The importance of hyperparameters, namely the number of neurons and the learning rate, is shown by considering a stationary anomalous diffusion-convection model on a rectangular domain. The proposed method showcases the network’s ability to approximate solutions of various local fractional elliptic partial differential equations with varying fractal parameters.

Funder

Division of Human Resource Development

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3