Accelerating physics-informed neural network based 1D arc simulation by meta learning

Author:

Zhong LinlinORCID,Wu Bingyu,Wang Yifan

Abstract

Abstract Physics-informed neural networks (PINNs) have a wide range of applications as an alternative to traditional numerical methods in plasma simulation. However, in some specific cases of PINN-based modeling, a well-trained PINN may require tens of thousands of optimizing iterations during training stage for complex modeling and huge neural networks, which is sometimes very time-consuming. In this work, we propose a meta-learning method, namely Meta-PINN, to reduce the training time of PINN-based 1D arc simulation. In Meta-PINN, the meta network is first trained by a two-loop optimization on various training tasks of plasma modeling, and then used to initialize the PINN-based network for new tasks. We demonstrate the power of Meta-PINN by four cases corresponding to 1D arc models at different boundary temperatures, arc radii, arc pressures, and gas mixtures. We found that a well-trained meta network can produce good initial weights for PINN-based arc models even at conditions slightly outside of training range. The speed-up in terms of relative L2 error by Meta-PINN ranges from 1.1× to 6.9× in the cases we studied. The results indicate that Meta-PINN is an effective method for accelerating the PINN-based 1D arc simulation.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Zhishan Young Scholar Project of Southeast University

Young Scientific and Technical Talents Promotion Project of Jiangsu Association for Science and Technology

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3