Abstract
Abstract
In this study, a series of Sierpiński-type structural plates have been artificially introduced to generate diversified acoustofluidic distributions in the originally-static microfluidic chambers, which are stimulated under the oscillation of incident acoustic waves at different input frequency points. The complicated interactions between quasi/pseudo-Sierpiński-carpet shaped structural plates and incident ultrasonic waves, including acoustic reflection and diffraction, can initiate sophisticated spatio-temporal discrepancies along the sound propagation path and induce heterogeneous acoustic streaming vortices. In comparison with the existing construction strategies of microfluidic lab-on-a-chip devices, the introduction of fractalized elements like quasi/pseudo-Sierpiński-carpet shaped structural components can provide remarkable insights and expand application scenarios of unconventional acoustofluidic approaches, which is conducive to driving ultrasonic micro/nano manipulation technology from monotonousness to diversification. The preliminary research demonstrates the feasibility of considering Sierpiński-type structural features as tunable ingredients to customize acoustofluidic apparatuses for the exploration of topographical manipulation of micro/nano-scale particles and orientational operation of biological specimens.
Funder
The Natural Science Foundation of the Jiangsu Higher Education Institutions of China
The Natural Science Foundation of China
The Scientific Research Foundation of Huaiyin Institute of Technology
The Industry-University-Research Collaboration Project of Jiangsu Province
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics