Enhancing the solar hydrogen generation performance of nickel-oxide nanostructured thin films doped with molybdenum

Author:

Abdelmoneim Alhoda,Abdel-wahab Mohamed ShORCID,Elfayoumi M A K,Ahmed Ashour MORCID,Ibrahim Alaa MORCID,Hamdy Hasnaa,Tawfik Wael ZORCID

Abstract

Abstract Using technology to store solar energy as hydrogen fuel (H2) on a scale corresponding to global energy use is a viable way to alleviate the energy crisis and environmental deterioration. This research deals with the manufacture of thin films prepared from nickel oxide (NiO) and their use in the photoelectrochemical (PEC) water-splitting process to produce green H2 as a clean energy fuel. Herein, pure and Mo-doped NiO thin films were successfully prepared using a straightforward sputtering method at different radio frequency (RF) power for the Mo target from 0 to 50 watt. x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), energy dispersive x-ray spectroscopy (EDX), and UV–vis spectroscopy techniques were used to analyze the structural, morphological, chemical composition, and optical characterization of the prepared films. The PEC behaviours for green H2 production and the impedance spectroscopy measurements were also investigated for all samples. In PEC measurements, the 50 W sample showed the highest PEC performance. At −0.4V versus RHE, the 50 W sample verified the highest value for the photocurrent density of about 1.7 mA cm−2 which was approximately four times more than the pure NiO sample. The applied biased photon-to-current conversion efficiency and incident photon-to-current conversion efficiency were also estimated. This research provided a fresh viewpoint on the design of highly active NiO-based photo-catalysts for the production of green H2 powered by solar light.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3