High-power diode lasers with in-situ-structured lateral current blocking for improved threshold, efficiency and brightness

Author:

Elattar MORCID,Brox O,Della Casa PORCID,Mogilatenko A,Maaßdorf A,Martin D,Wenzel H,Knigge A,Weyers M,Crump PORCID

Abstract

Abstract We present high-power GaAs-based broad-area diode lasers with a novel variant of the enhanced self-aligned lateral structure ‘eSAS’, having a strongly reduced lasing threshold and improved peak conversion efficiency and beam quality in comparison to their standard gain-guided counterparts. To realize this new variant (eSAS-V2), a two-step epitaxial growth process involving in situ etching is used to integrate current-blocking layers, optimized for tunnel current suppression, within the p-Al0.8GaAs cladding layer of an extreme-triple-asymmetric epitaxial structure with a thin p-side waveguide. The blocking layers are thus in close proximity to the active zone, resulting in strong suppression of current spreading and lateral carrier accumulation. eSAS-V2 devices with 4 mm resonator length and varying stripe widths are characterized and compared to previous eSAS variant (eSAS-V1) as well as gain-guided reference devices, all having the same dimensions and epitaxial structure. Measurement results show that the new eSAS-V2 variant eliminates an estimated 89% of lateral current spreading, resulting in a strong threshold current reduction of 29% at 90 μm stripe width, while slope and series resistance are broadly unchanged. The novel eSAS-V2 devices also maintain high conversion efficiency up to high continuous-wave optical power, with an exemplary 90 μm device having 51.5% at 20 W. Near-field width is significantly narrowed in both eSAS variants, but eSAS-V2 exhibits a wider far-field angle, consistent with the presence of index guiding. Nonetheless, eSAS-V2 achieves higher beam quality and lateral brightness than gain-guided reference devices, but the index guiding in this realization prevents it from surpassing eSAS-V1. Overall, the different performance benefits of the eSAS approach are clearly demonstrated.

Funder

TRUMPF Laser GmbH

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3