Optical, AC conductivity and antibacterial activity enhancement of chitosan-silver nanocomposites for optoelectronic and biomedical applications

Author:

Sarhan AORCID,Fahmy TORCID,Habib AORCID

Abstract

Abstract This study is aimed to prepare and investigate the optical, electrical and antibacterial activity of the environmentally friendly (green) chitosan (Cs)/silver nanocomposites. TEM demonstrated that AgNPs have a spherical shape with particle size ranged from 3 nm to 25 nm. UV analysis spectra of Cs and Cs/Ag nanocomposites showed that, increasing the content of AgNPs led to a noticeable increase in the values of Urbach energy (E U ) and a dramatic decrease in both the indirect (E ig ) and direct (E dg ) optical bandgap energies. It is found that (E ig ) and (E dg ) are decreased from (4.72/5.31 eV) to (2.47/4.19 eV). The formation of the AgNPs is verified by the existence of surface plasmon resonance (SPR) peak at ∼ (421–450) nm. Wemple-DiDomenico and Sellmeier oscillator models are employed and displayed a clear enrichment in the dispersion energy (E d ) and oscillator energy (E 0) as well as the linear and nonlinear optical parameters of Cs. It is observed that the linear (χ(1)) and nonlinear (χ(3) and n2) parameters are enhanced from 0.083, 0.868 × 10−14 and 1.584 × 10−12 to 0.153, 9.762 × 10−14 and 4.088 × 10−12. The novel results in our study nominate Cs/Ag nanocomposites for applications in linear/nonlinear optical devices. AC conductivity behavior of Cs and Cs/Ag nanocomposites is analyzed based on Jonscher’s law and the analysis showed that the overlapping large polaron tunneling (OLPT) is the dominant conduction mechanism for our samples. It is clear that the values of dielectric constant (ε′) of Cs and Cs/Ag nanocomposites are higher confirming the presence of interface polarization (IP) relaxation. Moreover, it is found that the antibacterial activity of Cs against Gram-negative (P. aeruginosa) and Gram-positive (B. thuringiensis) bacteria is found to be enhanced with increasing the content of Ag NPs. These results suggested that Cs/Ag nanocomposites will be good source for preparing bio-nanocomposites for use in many biomedical and industrial applications.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3