A single gate Si1−xGex dopingless TFET functioned as an effective label-free biosensor

Author:

Panda Shwetapadma,Dash SidharthaORCID

Abstract

Abstract This paper examines the sensitivity of a newly presented heterojunction dopingless tunnel field effect transistor (HJ-DLTFET) biosensor for the label-free detection of biomolecules. The etched nanocavity is introduced in the source metal region for better sensing ability. The dielectric constants (k) of five neutral biomolecules are employed in this paper to test the sensitivity of the proposed biosensor. The electrostatic performance is investigated based on transfer characteristics, energy band, tunneling distance (λ) at source/channel (S/C) interface, drain current (ID) variation for different dielectric constant (k), drain to source voltage (VDS) variation and mole fraction (x) variation respectively. Further, the RF performance analysis includes gate/source capacitance (Cgs), total gate capacitance (Cgg), cut-off frequency (ft), and maximum frequency (fm) analysis. Similarly, sensitivity analysis consists of current sensitivity (SID), current ratio sensitivity (Sratio), average SS sensitivity (SSS), Cgs sensitivity, Cgg sensitivity, ft sensitivity, and fm sensitivity. The investigation is carried out with the variation of neutral biomolecules in terms of various k inside the cavity. Similarly, the impact of charged biomolecules on the sensitivity of the proposed biosensor is investigated. The HJ-DLTFET sensor provides the maximum sensitivity SID of 1.56 × 1010, Sratio of 5.95 × 109, and SSS of 0.80 for Gelatin (k = 12.00) at room temperature using the Silvaco TCAD simulation tool. Combining a low band gap Si0.6Ge0.4 source with a high band gap silicon channel and a high-k (HfO2) improves drain current sensitivity without impacting leakage current.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3