Ambipolarity Sensitivity Investigation using a Charge-Plasma TFET with Graphene Channel for Biomolecule Detection

Author:

Dash SidharthaORCID,Mishra Guru PrasadORCID

Abstract

This research proposes a label-free detection of neutral and charged biomolecules using a graphene channel-based charge-plasma tunnel field effect transistor (GC-CPTFET). The presence of a graphene channel provides a greater tunneling barrier at the channel/drain interface, significantly reducing ambipolarity and increasing the current gradient in the ambipolar condition. A nanocavity is created underneath the drain metal to investigate the sensitivity. Here, the various analog sensitivity parameters of the suggested biosensor are evaluated for a few neutral biomolecules in the ambipolar condition, including gelatin, biotin, and 3-aminopropyl-triethoxysilane (APTES). The sensor’s electrostatic performance, including its IDS-VGS characteristics, energy band, and tunneling distance, has been estimated in the ambipolar state. The sensitivity analysis is carried out in terms of ambipolar sensitivity (SAMB), transconductance (Sgm), cut-off frequency sensitivity (Sft), and maximum frequency sensitivity (Sfm). Further research has been done to study the effects of Deoxyribonucleic Acid (DNA), a charged biomolecule (k = 6) with varied positive and negative charge densities, on various sensitivity parameters. The detailed simulation work for the designed biosensor is achieved using the 2D Silvaco ATLAS device simulation tool.

Publisher

The Electrochemical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3