Extended black hole solutions in self-interacting Brans-Dicke theory

Author:

Sharif MORCID,Majid Amal

Abstract

Abstract In this paper, we formulate black hole solutions through extended gravitational decoupling scheme in the framework of self-interacting Brans-Dicke theory. The addition of a new source in the matter distribution increases the degrees of freedom in the system of field equations. Transformations in radial as well as temporal metric functions split the system into two arrays. Each array includes the effects of only one source (either seed or additional). The seed source is assumed to be a vacuum and the corresponding system is specified through the Schwarzschild metric. In order to construct a suitable solution of the second system, constraints are applied on the metric potentials and energy-momentum tensor of the additional source. We obtain three solutions corresponding to different values of the decoupling parameter in the presence of a massive scalar field. The extra source is classified as normal or exotic through energy conditions. It is found that two solutions agree with the energy bounds and thus have normal matter as their source.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3