Atmospheric turbulence recognition with deep learning models for sinusoidal hyperbolic hollow Gaussian beams-based free-space optical communication links

Author:

Elmabruk KholoudORCID,Adem KemalORCID,Kılıçarslan SerhatORCID

Abstract

Abstract The integration of artificial intelligence technology to improve the performance of free-space optical communication (FSO) systems has received increasing interest. This study aims to propose a novel approach based on deep learning techniques for detecting turbulence-induced distortion levels in FSO communication links. The deep learning-based models improved and fine-tuned in this work are trained using a dataset containing the intensity profiles of Sinusoidal hyperbolic hollow Gaussian beams (ShHGBs). The intensity profiles included in the dataset are the ones of ShHGBs propagating for 6 km under the influence of six different atmospheric turbulence strengths. This study presents deep learning-based Resnet-50, EfficientNet, MobileNetV2, DenseNet121 and Improved+MobileNetV2 approaches for turbulence-induced disturbance detection and experimental evaluation results. In order to compare the experimental results, an evaluation is made by considering the accuracy, precision, recall, and f1-score criteria. As a result of the experimental evaluation, the average values for accuracy, precision, recall and F-score with the best performance of the improved method are given; average accuracy 0.8919, average precision 0.8933, average recall 0.8955 and average F-score 0.8944. The obtained results have immense potential to address the challenges associated with the turbulence effects on the performance of FSO systems.

Publisher

IOP Publishing

Reference40 articles.

1. Artificial intelligence for photonics and photonic materials;Piccinotti;Rep. Prog. Phys.,2021

2. Deep learning in neural networks: an overview;Schmidhuber;Neural Netw.,2015

3. Atmospheric turbulence study with deep machine learning of ıntensity scintillation patterns;Vorontsov;Applied Sciences,2020

4. Machine learning techniques for channel estimation in free space optical communication systems;Mishra,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3