Abstract
Abstract
The low-lying magnetic (M1) and electric (E1) dipole modes in well-deformed odd-proton 175Lu have been investigated in the framework of the Rotational, Translational, and Galilean Invariant-Quasiparticle Phonon Nuclear Model (RTGI-QPNM) for the first time. In this model, the single-particle basis obtained from an axially symmetric Woods-Saxon potential, E1 and M1 excitations are assumed to be generated by isovector dipole-dipole and spin-spin interactions between nucleons, respectively. It also includes the restoration forces for breaking the Rotational, Translational and Galilean symmetries of the nuclear Hamiltonian. The transition probabilities, radiation widths and the structure for both M1 and E1 transitions in 175Lu have been calculated. The theory has satisfactorily reproduced the observed fragmentation in dipole spectra. However, the individual dipole strength of the states is higher than the experimental ones, which may be attributed to the lack of multiphonon configurations in the model used. Besides, the predicted total dipole radiation width and its reduced value are almost twice the experimental data. This difference is a well-known phenomenon for odd-mass deformed nuclei, called ‘missing strength’, arising in the Nuclear Resonance Flouracanse experiment due to the high-level densities.
Funder
Scientific and Technological Research Council of Turkey
Ph.D. Scholarship and the Scientific and Technological Research Council of Turkey
Council of Higher Education
Research Fund of the Sakarya University
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献