Abstract
Abstract
The effect of the polarizations on the collective gyromagnetic ratio (g
R
) has been investigated in detail using the Rotational Invariant Quasiparticle Phonon Nuclear Model (RI-QPNM). The model includes an axially symmetric mean-field potential, monopole pairing, spin-dependent residual interactions, and the restoration forces determined according to Pyatov’s prescription for rotational invariance. The restoration of the rotational symmetry gives a solution at the zero energy associated with the rotational branch of nucleonic motion, allowing us to obtain the g
R
-factors of the core. The remaining solutions lead to the appearance of configuration mixing in the excitation spectrum of the odd-mass deformed nucleus. The configuration mixing quenches both spin and angular momentum matrix elements and affects the contribution of the odd particle to the g
R
. It has been demonstrated that the polarization factors associated with the ΔK = 1 matrix elements are essential to achieve quantitative agreement with the experimental data. It has also been shown that the general assumption for core polarization, i.e.,
g
s
e
f
f
≈
0.6
g
s
f
r
e
e
,
is insufficient to explain the experimental data.
Funder
Scientific and Technological Research Council of Turkey
National PhD Scholarship Program
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献