Impact of B4C buffer layer on interface diffusion in Cr/Sc multilayers: combined study by x-ray reflectivity, scattering and fluorescence

Author:

Sarkar PORCID,Biswas A,Rai Sanjay,Modi M H,Ghorai GurupadaORCID,Sahoo Pratap KORCID,Jha S N,Bhattacharyya DORCID

Abstract

Abstract In thin film multilayer based optical componentsof x-ray imaging system, diffusion of one material into the other degrades the reflectivity of the mirrors severely. Along with this thermodynamically driven diffusion, there are also growth generated interface roughness of different special frequencies and microstructures which can increase the diffused scattering from the multilayer and reduce the resolution of an image. Generally grazing incidence x-ray reflectivity in specular geometry (specular GIXR) and diffused x-ray scattering measurement in rocking scan geometry yield information regarding microstructure and overall diffusion at the interfaces of a multilayer. In this paper it is shown that grazing incidence x-ray fluorescence (GIXRF) measurement in standing wave condition alongwith the above measurements can give precise information regarding element-specific diffusion at the interfaces of a multilayer structure. Periodic multilayers made of 75 Cr/Sc bilayers with bilayer thickness ∼4 nm with and without B4C barrier layer of 0.2 nm thickness at the interfaces have been prepared using ion beam sputtering system and characterized by GIXR, diffused x-ray scattering and GIXRF measurements using synchrotron x-ray radiation just above the Cr K-edge. From the above measurements, drastic reduction in interface diffusion of Cr and improvement of interface morphology after addition of B4C barrier layer at the interfaces of Cr/Sc multilayers have been observed which is also corroborated by cross-sectional transmission electron microscopy of the multilayers. Finally, in the water window soft x-ray region of 2.3–4.4 nm performance of these multilayers have been tested and the Cr/B4C/Sc multilayer with improved interface quality has been found to yield ∼30.8% reflectivity at 3.11 nm wavelength which is comparable with the best reported reflectivities in the literature at this wavelength.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3