Implementation of a PAFV turbulence model for airfoil flow simulation on OpenFOAM

Author:

Yan WenhuiORCID,Sun ZhaozhengORCID,Sun YifanORCID,Tian XiaoORCID

Abstract

Abstract To further develop a more effective turbulence model and to improve the calculation accuracy of the flow around airfoil, a new PAFV turbulence model has here been constructed by using a deformation rate tensor and the grouping of an average fluctuation velocity. To evaluate the applicability of the PAFV turbulence model, the numerical calculations of flow around the airfoil have here been implemented, which was based on the OpenFOAM calculation platform. On the basis of grid independence research, the model was used to calculate the low-speed flow-around problem for the plano-convex airfoil NACA4412 and the symmetric airfoil NACA0012. It was also compared with the S-A (Spalart-Allmaras) and SST (Shear Stress Transport) k-ω turbulence models. Firstly, the maximum lift angle-of-attack case of the NACA4412 airfoil was calculated. Thereafter, numerical calculations were performed for the flow around the airfoil in the multi-angle-of-attack case of the NACA0012 airfoil. The results showed that the NACA4412 airfoil had an obviously separated vortex at the trailing edge of the airfoil at the maximum lift angle of attack. Also, there was a certain velocity loss downstream of the trailing edge, which was calculated by all three models. However, the results of the PAFV turbulence model were found to be better than those of the S-A and SST turbulence models. The three turbulence models showed comparable accuracies for the calculations of the surface pressure coefficients of the NACA0012 airfoil. However, the S-A and SST k-ω turbulence models were slightly better for the calculations of the mean velocity profiles of the NACA0012 airfoil. Also, the PAFV turbulence model was more accurate for the calculations of the lift and drag coefficients. In conclusion, the PAFV model can make effective predictions of the airfoil low-speed flow around the problem at hand, which in turn preliminarily verifies the applicability of this turbulence model for the low-speed flow around the airfoil problems.

Funder

Advanced Aircraft Engine Project Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3