Advanced container inspection system based on dual-angle X-ray imaging method

Author:

Lim C.H.,Lee J.,Choi Y.,Park J.W.,Kim H.K.

Abstract

Abstract In 2007, the U.S. Congress mandated the implementation of the “Security and Accountability For Every Port Act of 2006,” which requires complete scanning of 100% of U.S.-bound shipping containers. To address this requirement, we developed a container inspection method that enables continuous high-speed screening, with considerable performance improvement. In this study, we developed a fixed-type high-precision container inspection system using dual-angle X-ray beams from a 9 MV linear accelerator (LINAC). We first calculated the X-ray irradiation angle-dependent changes in the contrast-to-noise ratio (CNR) of the images via Monte Carlo simulation. Using the calculated CNRs, the primary and secondary angles of the X-ray beam were set to 0° and 2.8°, respectively. A system based on the proposed dual-angle X-ray imaging technology was installed and evaluated by scanning a real cargo container truck. For the evaluation, we designed test equipment based on the ANSI N42.46 report and examined the beam penetration power, contrast sensitivity, spatial resolution, and wire detectability of the developed system. The maximum penetration thicknesses for the primary and secondary angle beams were found to be 410 and 400 mm, respectively. At the primary beam angle, the contrast sensitivities were 1.52% and 0.49% when the thicknesses of the steel plate were 80% and 50% of the maximum penetration thickness, respectively. At the secondary angle, the sensitivities were 1.88% at 80% maximum penetration thickness, and 0.5% at 50%. A line pattern formed by individual slits of 4.6 mm width could be easily recognized in an acquired image. In addition, the developed system could clearly identify a 1.6 mm diameter copper wire. Further, when a steel plate was added, the change in the wire-recognition ability of the imaging system was found to be similar at both beam angles. These results indicate that the developed system is suitable for container screening using a 9 MV LINAC. Shapes that could not be identified from one beam irradiation angle could more accurately be analyzed using images from two different angles.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference21 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3