Cosmic ray muon clustering for the MicroBooNE liquid argon time projection chamber using sMask-RCNN

Author:

Abratenko P.,An R.,Anthony J.,Arellano L.,Asaadi J.,Ashkenazi A.,Balasubramanian S.,Baller B.,Barnes C.,Barr G.,Barrow J.,Basque V.,Bathe-Peters L.,Benevides Rodrigues O.,Berkman S.,Bhanderi A.,Bhat A.,Bishai M.,Blake A.,Bolton T.,Book J.Y.,Camilleri L.,Caratelli D.,Caro Terrazas I.,Cavanna F.,Cerati G.,Chen Y.,Church E.,Cianci D.,Conrad J.M.,Convery M.,Cooper-Troendle L.,Crespo-Anadón J.I.,Del Tutto M.,Dennis S.R.,Detje P.,Devitt A.,Diurba R.,Dorrill R.,Duffy K.,Dytman S.,Eberly B.,Ereditato A.,Evans J.J.,Fine R.,Fiorentini Aguirre G.A.,Fitzpatrick R.S.,Fleming B.T.,Foppiani N.,Franco D.,Furmanski A.P.,Garcia-Gamez D.,Gardiner S.,Ge G.,Gollapinni S.,Goodwin O.,Gramellini E.,Green P.,Greenlee H.,Gu W.,Guenette R.,Guzowski P.,Hagaman L.,Hen O.,Hilgenberg C.,Horton-Smith G.A.,Hourlier A.,Itay R.,James C.,Ji X.,Jiang L.,Jo J.H.,Johnson R.A.,Jwa Y.-J.,Kalra D.,Kamp N.,Kaneshige N.,Karagiorgi G.,Ketchum W.,Kirby M.,Kobilarcik T.,Kreslo I.,Lepetic I.,Li J.-Y.,Li K.,Li Y.,Lin K.,Littlejohn B.R.,Louis W.C.,Luo X.,Manivannan K.,Mariani C.,Marsden D.,Marshall J.,Martinez Caicedo D.A.,Mason K.,Mastbaum A.,McConkey N.,Meddage V.,Mettler T.,Miller K.,Mills J.,Mistry K.,Mogan A.,Mohayai T.,Moon J.,Mooney M.,Moor A.F.,Moore C.D.,Mora Lepin L.,Mousseau J.,Mulleriababu S.,Murphy M.,Naples D.,Navrer-Agasson A.,Nebot-Guinot M.,Neely R.K.,Newmark D.A.,Nowak J.,Nunes M.,Palamara O.,Paolone V.,Papadopoulou A.,Papavassiliou V.,Pate S.F.,Patel N.,Paudel A.,Pavlovic Z.,Piasetzky E.,Ponce-Pinto I.D.,Prince S.,Qian X.,Raaf J.L.,Radeka V.,Rafique A.,Reggiani-Guzzo M.,Ren L.,Rice L.C.J.,Rochester L.,Rodriguez Rondon J.,Rosenberg M.,Ross-Lonergan M.,Scanavini G.,Schmitz D.W.,Schukraft A.,Seligman W.,Shaevitz M.H.,Sharankova R.,Shi J.,Sinclair J.,Smith A.,Snider E.L.,Soderberg M.,Söldner-Rembold S.,Spentzouris P.,Spitz J.,Stancari M.,St. John J.,Strauss T.,Sutton K.,Sword-Fehlberg S.,Szelc A.M.,Tagg N.,Tang W.,Terao K.,Thorpe C.,Totani D.,Toups M.,Tsai Y.-T.,Uchida M.A.,Usher T.,Van De Pontseele W.,Viren B.,Weber M.,Wei H.,Williams Z.,Wolbers S.,Wongjirad T.,Wospakrik M.,Wresilo K.,Wright N.,Wu W.,Yandel E.,Yang T.,Yarbrough G.,Yates L.E.,Yu F.J.,Yu H.W.,Zeller G.P.,Zennamo J.,Zhang C.

Abstract

Abstract In this article, we describe a modified implementation of Mask Region-based Convolutional Neural Networks (Mask-RCNN) for cosmic ray muon clustering in a liquid argon TPC and applied to MicroBooNE neutrino data. Our implementation of this network, called sMask-RCNN, uses sparse submanifold convolutions to increase processing speed on sparse datasets, and is compared to the original dense version in several metrics. The networks are trained to use wire readout images from the MicroBooNE liquid argon time projection chamber as input and produce individually labeled particle interactions within the image. These outputs are identified as either cosmic ray muon or electron neutrino interactions. We find that sMask-RCNN has an average pixel clustering efficiency of 85.9% compared to the dense network's average pixel clustering efficiency of 89.1%. We demonstrate the ability of sMask-RCNN used in conjunction with MicroBooNE's state-of-the-art Wire-Cell cosmic tagger to veto events containing only cosmic ray muons. The addition of sMask-RCNN to the Wire-Cell cosmic tagger removes 70% of the remaining cosmic ray muon background events at the same electron neutrino event signal efficiency. This event veto can provide 99.7% rejection of cosmic ray-only background events while maintaining an electron neutrino event-level signal efficiency of 80.1%. In addition to cosmic ray muon identification, sMask-RCNN could be used to extract features and identify different particle interaction types in other 3D-tracking detectors.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3