Fast transient infrared detection for time-domain astronomy

Author:

Drago A.,Pace E.,Bini S.,Guidi M.Cestelli,Cioeta F.,Marcelli A.,Bocci V.

Abstract

Abstract Multi-messenger astronomy requires the use and development of telescopes and detectors for temporal observations across all the electromagnetic spectrum. The interest of our team is towards time-domain (or longitudinal, in the jargon of storage ring diagnostics) detectors able to make observations over the time rather than transversely by making photographs or spectrographs. The FAIRTEL (Fast InfraRed TELescope) experiment wants to build a very fast detector in the Mid InfraRed (MIR) to be used in time-domain astronomy. The experiment is oriented mainly toward the search of fast astronomical transients in the Galaxy, similarly to what has been observed in different electromagnetic ranges with the discovery of the FRBs (Fast Radio Burst) and the GRBs (Gamma-Ray Burst). In the last years, time-domain astronomy is growing in interest and intends to study events on time scales that can go from hundreds of milliseconds to microseconds and even shorter. The detector proposed by the FAIRTEL experiment, is based on HgCdTe semiconductors and on the experience done in the diagnostics for storage ring developed at DAFNE, the Italian e+/e− circular collider. The detection system design is in progress at the LNF (Laboratori Nazionali di Frascati) of INFN (Istituto Nazionale di Fisica Nucleare) while the telescope will be a standard reflecting type, like a Newtonian, a Cassegrain or a Ritchey–Chrétien telescope. The detection apparatus is under test at the IR synchrotron beamline SINBAD at DAFNE and it is foreseen to be implemented at the OPC (Osservatorio Polifunzionale del Chianti). It should be able to observe events with transients down to the nanosecond. A further development of the project involves the extension from ground-based observations to those by using balloons for scientific studies.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3