A proposal for a fast infrared bursts detector

Author:

Drago AlessandroORCID,Bini Simone,Cestelli Guidi Mariangela,Marcelli Augusto,Bocci Valerio,Pace Emanuele

Abstract

Abstract The gravitational wave GW170817 from a binary neutron star merger and the simultaneous electromagnetic detection of the GRB170717A by Fermi Gamma-Ray Space Telescope, opened a new era in the multi-messenger astronomy. Furthermore, the GRBs (Gamma-Ray Bursts) and the mysterious FRBs (Fast Radio Bursts) have sparked interest in the development of new detectors and telescopes dedicated to the time-domain astronomy across the electromagnetic spectrum. Time-domain astronomy aims to acquire fast astronomical bursts in temporal range between a few seconds down to 1 ns. Fast InfraRed Bursts (FIRB's) have been relatively understudied, often due to the lack of appropriate tools for observation and analysis. In this scientific scenario, the present contribution proposes a new detection system for ground-based reflecting telescopes working in the mid-infrared (mid-IR) range to search for astronomical FIRB's. Experience developed in the diagnostics for lepton circular accelerators can be used to design temporal devices for astronomy. Longitudinal diagnostic instruments acquire bunch-by-bunch particle shifts in the direction of flight, that is equivalent to temporal. Transverse device integrates the beam signal in the horizontal and vertical coordinates, as standard telescopes. The proposed instrument aims to work in temporal mode. Feasibility study tests have been carried out at SINBAD, the infrared beam line of DAFNE, the e+e- collider of INFN. SINBAD releases pulsed infrared synchrotron light with 2.7 ns separation. The front-end detector system has been evaluated to detect temporal fast infrared signals with 2–12 μm wavelengths and 1 ns rise times. The present contribute aims to be a step toward a feasibility study report.

Publisher

IOP Publishing

Reference28 articles.

1. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral;LIGO Scientific, Virgo Collaboration;Phys. Rev. Lett.,2017

2. Multi-messenger Observations of a Binary Neutron Star Merger;LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT Collaboration;Astrophys. J. Lett.,2017

3. Observing gravitational-wave transient GW150914 with minimal assumptions;LIGO Scientific, Virgo Collaboration;Phys. Rev. D,2016

4. New diagnostics and cures for coupled bunch instabilities;Prabhakar,2000

5. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission;Atwood;Astrophys. J.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3