Deformable 3D medical image registration with convolutional neural network and transformer

Author:

Deng Liwei,Zou Yanchao,Huang Sijuan,Yang Xin,Wang Jing

Abstract

Abstract Deformable registration of medical images based on deep learning has been the research focus this year. Convolutional Neural Network (CNN) and the transformer are the most common backbone and have been shown to enhance registration accuracy. However, CNN lacks the ability to contact long-distance information, and the transformer lacks the ability to capture local information. Whichever subtle feature loss may lead to disastrous consequences in the analysis of clinical medicine. This paper presented a novel registration network named Information Complementation Network (ICN). We aim to improve the registration accuracy by complementing the lost information. Pure transformers can establish long-distance spatial information about the image. Proposed meshing patch embedding can minimize the loss of local information and expand the receptive field to extract long-distance information. The dual-path decoder in ICN is designed to restore information furthest. We experimented on 3D brain MRI data and quantitatively compared several excellent registration models. Compared with conventional methods, the dice coefficient increased by 3%. Compared with the advanced methods, the dice coefficient increased by 1%. The number of foldings was reduced by about 50% without any loss of registration accuracy. Each evaluation metric of the trained models on liver CT images was higher than other methods. By fully complementing the lost or invalid information, ICN achieved higher registration accuracy and smoother deformation field. The innovation and contribution of this paper have the potential to be applied to clinical research or medical image processing.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3