HT-Net: hierarchical context-attention transformer network for medical ct image segmentation
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-021-03010-0.pdf
Reference47 articles.
1. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380
2. Ben Abdallah M, Azar A, Guedri H, et al. (2018) Noise-estimation-based anisotropic diffusion approach for retinal blood vessel segmentation. Neural Comput Appl 29:159–180
3. Tong H, Fang Z, Wei Z, et al. (2021) SAT-Net: a side attention network for retinal image segmentation. Appl Intell 51: 5146–5156
4. Deniz C M, Xiang S, Hallyburton R S, Welbeck A, Babb J S, Honig S, Cho K, Chang G (2018) Segmentation of the proximal femur from mr images using deep convolutional neural networks. Sci Rep 8(1):1–14
5. Fan DP, Ji GP, Zhou T, Chen G, Fu H, Shen J, Shao L (2020) Pranet: Parallel reverse attention network for polyp segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 263–273
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Next-Gen Medical Imaging: U-Net Evolution and the Rise of Transformers;Sensors;2024-07-18
2. Research on brain tumor segmentation algorithm based on attention mechanism;2024 2nd International Conference on Intelligent Perception and Computer Vision (CIPCV);2024-05-17
3. Recent developments in segmentation of COVID-19 CT images using deep-learning: An overview of models, techniques and challenges;Biomedical Signal Processing and Control;2024-05
4. TransDiff: medical image segmentation method based on Swin Transformer with diffusion probabilistic model;Applied Intelligence;2024-04
5. A Spinal MRI Image Segmentation Method Based on Improved Swin-UNet;Network: Computation in Neural Systems;2024-03-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3