Enhancing spatial resolution in MÖNCH for electron microscopy via deep learning

Author:

Xie X.,Barba Flores L.,Bejar Haro B.,Bergamaschi A.,Fröjdh E.,Müller E.,Paton K.A.,Poghosyan E.,Remlinger C.

Abstract

Abstract Hybrid Pixel Detectors (HPDs) are highly suitable in diffraction-based electron microscopy due to their high frame rates (> 1 kHz), high dynamic range, and good radiation hardness. However, their use in imaging applications has been limited by their relatively large pixel size (≥ 55 μm) and high-energy (>80 keV) electrons scattering over multiple pixels in the sensor layer. To realize the full potential of fast, radiation-hard HPDs across electron microscopy modalities, we developed deep learning techniques to precisely localize the impact point of incident electrons in MÖNCH, a charge integrating HPD with 25 μm pixel size. With neural network models trained using labeled data via simulations and experimental measurements, the best spatial resolution obtained, defined in terms of the root mean squared error, was 0.60 pixels for 200 keV electrons, a three-fold improvement over a simple charge centroid method. This article presents the training sample generation, deep learning model design, training results, and imaging outcomes for a sample containing gold nanoparticles.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3