CCD detectors in high-resolution biological electron microscopy

Author:

Faruqi A. R.,Subramaniam Sriram

Abstract

1. Introduction 11.1 The ‘band gap’ in silicon 22. Principles of CCD detector operation 32.1 Direct detection 32.2 Electron energy conversion into light 42.3 Optical coupling: lens or fibre optics? 62.4 Readout speed and comparison with film 83. Practical considerations for electron microscopic applications 93.1 Sources of noise 93.1.1 Dark current noise 93.1.2 Readout noise 93.1.3 Spurious events due to X-rays or cosmic rays 103.2 Efficiency of detection 113.3 Spatial resolution and modulation transfer function 123.4 Interface to electron microscope 143.5 Electron diffraction applications 154. Prospects for high-resolution imaging with CCD detectors 185. Alternative technologies for electronic detection 235.1 Image plates 235.2 Hybrid pixel detectors 246. References 26During the past decade charge-coupled device (CCD) detectors have increasingly become the preferred choice of medium for recording data in the electron microscope. The CCD detector itself can be likened to a new type of television camera with superior properties, which makes it an ideal detector for recording very low exposure images. The success of CCD detectors for electron microscopy, however, also relies on a number of other factors, which include its fast response, low noise electronics, the ease of interfacing them to the electron microscope, and the improvements in computing that have made possible the storage and processing of large images.CCD detectors have already begun to be routinely used in a number of important biological applications such as tomography of cellular organelles (reviewed by Baumeister, 1999), where the resolution requirements are relatively modest. However, in most high- resolution microscopic applications, especially where the goal of the microscopy is to obtain structural information at near-atomic resolution, photographic film has continued to remain the medium of choice. With the increasing interest and demand for high-throughput structure determination of important macromolecular assemblies, it is clearly important to have tools for electronic data collection that bypass the slow and tedious process of processing images recorded on photographic film.In this review, we present an analysis of the potential of CCD-based detectors to fully replace photographic film for high-resolution electron crystallographic applications.

Publisher

Cambridge University Press (CUP)

Subject

Biophysics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3