TCAD optimization of LGAD sensors for extremely high fluence applications

Author:

Croci T.,Morozzi A.,Sola V.,Asenov P.,Fondacci A.,Giordanengo S.,Borghi G.,Vignali M.C.,Paternoster G.,Boscardin M.,Menichelli M.,Cartiglia N.,Passeri D.,Moscatelli F.

Abstract

Abstract The next generation of high-energy physics experiments at future hadronic colliders will require tracking detectors able to efficiently operate in extreme radiation environments, where expected fluences will exceed 1 × 1017 neq/cm2. This new operating scenario imposes many efforts on the design of effective and radiation-resistant particle detectors. Low-Gain Avalanche Diode (LGAD) represents a remarkable advance because the radiation damage effects can be mitigated by exploiting its charge multiplication mechanism after heavy irradiation. To obtain the desired gain (about 10–20) on the sensor output signal, a careful implementation of the “multiplication” region is needed (i.e.  the high-field junction implant). Moreover, a proper design of the peripheral region (namely, the guard-ring structure) is crucial to prevent premature breakdown and large leakage currents at very high fluences, when the bias voltage applied creates an electric field higher than 15 V/μm. In this contribution, the design of LGAD sensors for extreme fluence applications is discussed, addressing the critical technological aspects such as the choice of the active substrate thickness, the gain layer design and the optimization of the sensor periphery. The impact of several design strategies is evaluated with the aid of Technology-CAD (TCAD) simulations based on a recently proposed model for the numerical simulation of radiation damage effects on LGAD devices.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference17 articles.

1. Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications;Pellegrini;Nucl. Instrum. Meth. A,2014

2. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors;Cartiglia;Nucl. Instrum. Meth. A,2017

3. TCAD simulations of non-irradiated and irradiated low-gain avalanche diodes and comparison with measurements;Croci;JINST,2022

4. Acceptor removal — displacement damage effects involving the shallow acceptor doping of p-type silicon devices;Moll,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3