Quantitative comparison of planar coded aperture imaging reconstruction methods

Author:

Meißner T.,Rozhkov V.,Hesser J.,Nahm W.,Loew N.

Abstract

Abstract Imaging distributions of radioactive sources plays a substantial role in nuclear medicine as well as in monitoring nuclear waste and its deposit. Coded Aperture Imaging (CAI) has been proposed as an alternative to parallel or pinhole collimators, but requires image reconstruction as an extra step. Multiple reconstruction methods with varying run time and computational complexity have been proposed. Yet, no quantitative comparison between the different reconstruction methods has been carried out so far. This paper focuses on a comparison based on three sets of hot-rod phantom images captured with an experimental γ-camera consisting of a Tungsten-based MURA mask with a 2 mm thick 256 × 256 pixelated CdTe semiconductor detector coupled to a Timepix© readout circuit. Analytical reconstruction methods, MURA Decoding, Wiener Filter and a convolutional Maximum Likelihood Expectation Maximization (MLEM) algorithm were compared to data-driven Convolutional Encoder-Decoder (CED) approaches. The comparison is based on the contrast-to-noise ratio as it has been previously used to assess reconstruction quality. For the given set-up, MURA Decoding, the most commonly used CAI reconstruction method, provides robust reconstructions despite the assumption of a linear model. For single image reconstruction, however, MLEM performed best of all analytical reconstruction methods, but took on average 45 times longer than MURA Decoding. The fastest reconstruction method is the Wiener Filter with a run time 4.3 times faster compared to MURA Decoding and a mediocre quality. The CED with a specifically tailored training set was able to succeed the most commonly used MURA decoding on average by a factor between 1.37 and 2.60 and an equal run time.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3