3D-localization of single point-like gamma sources with a coded aperture camera

Author:

Meißner TobiasORCID,Cerbone Laura AntoniaORCID,Russo PaoloORCID,Nahm WernerORCID,Hesser JürgenORCID

Abstract

Abstract Objective. 3D-localization of gamma sources has the potential to improve the outcome of radio-guided surgery. The goal of this paper is to analyze the localization accuracy for point-like sources with a single coded aperture camera. Approach. We both simulated and measured a point-like 241 Am source at 17 positions distributed within the field of view of an experimental gamma camera. The setup includes a 0.11 mm thick Tungsten sheet with a MURA mask of rank 31 and pinholes of 0.08 mm in diameter and a detector based on the photon counting readout circuit Timepix3. Two methods, namely an iterative search including either a symmetric Gaussian fitting or an exponentially modified Gaussian fitting (EMG) and a center of mass method were compared to estimate the 3D source position. Main results. Considering the decreasing axial resolution with source-to-mask distance, the EMG improved the results by a factor of 4 compared to the Gaussian fitting based on the simulated data. Overall, we obtained a mean localization error of 0.77 mm on the simulated and 2.64 mm on the experimental data in the imaging range of 20 100 mm . Significance. This paper shows that despite the low axial resolution, point-like sources in the nearfield can be localized as well as with more sophisticated imaging devices such as stereo cameras. The influence of the source size and the photon count on the imaging and localization accuracy remains an important issue for further research.

Funder

Commissione Scientifica Nazionale 5, Instituto Nazionale di Fisica Nucleare

Bundesministerium für Wirtschaft und Klimaschutz

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3