A numerical solver for investigating the space charge effect on the electric field in liquid argon time projection chambers

Author:

Tu Shuang Z.,Jiang Chao,Junk Thomas R.,Yang Tingjun

Abstract

Abstract This paper reports the development of a numerical solver aimed to simulate the interaction between the space charge (i.e. ions) distribution and the electric field in liquid argon time projection chamber (LArTPC) detectors. The ion transport equation is solved by a time-accurate, cell-centered finite volume method and the electric potential equation by a continuous finite element method. The electric potential equation updates the electric field which provides the drift velocity to the ion transport equation. The ion transport equation updates the space charge density distribution which appears as the source term in the electric potential equation. The interaction between the space charge distribution and the electric field is numerically simulated within each physical time step. The convective velocity in the ion transport equation can include the background flow velocity in addition to the electric drift velocity. The numerical solver has been parallelized using the Message Passing Interface (MPI) library. Numerical tests show and verify the capability and accuracy of the current numerical solver. It is planned that the developed numerical solver, together with a Computational Fluid Dynamics (CFD) package which provides the flow velocity field, can be used to investigate the space charge effect on the electric field in large-scale particle detectors.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3