Physical design and multi-physics analysis of a 200 MHz continuous wave radio frequency quadrupole accelerator for a proton accelerator facility

Author:

Zhang Z.Y.,Ma W.,Yuan N.,Sun Y.B.,Ge Y.L.,Zou Z.P.,Zhang Z.L.,Zou L.P.,Yang Z.,Lu L.

Abstract

Abstract Based on the platform of a proton accelerator facility, a 200 MHz high intensity continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed at the Sino-French Institute of Nuclear Engineering and Technology of Sun Yat-Sen University, China. Employing the conventional four-vane structure, the RFQ can accelerate 20 mA proton beam from 20 keV to 2.5 MeV. In the beam dynamics design, the simulated transmission efficiency reaches 99.5% and the vane length is less than 4 m. In the electromagnetic design, for the long-term stable operation, Pi-mode Stabilizer Loops (PISLs) are utilized to achieve more than 10 MHz mode frequency separation and to decrease the effects of dipole modes. The 48 tuners are optimized to provide a range of ± 2 MHz frequency tuning. Additionally, the undercuts are optimized to ensure a good field flatness along the longitudinal direction. Based on the coolant channel design, the multi-physics analysis is performed to investigate the deformation and stress resulting from the dissipation of RF power within the cavity, as well as determine the temperature tuning coefficients of the coolants within the vane and wall. The entire design and analysis of PAFA-RFQ has been completed, and the scheme of the design can also be applied to the design of other RFQ cavities.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3