Author:
Lawson C. R.,Jones A. T.,Kockelmann W.,Horney S. J.,Kirichek O.
Abstract
AbstractThe invention of the 3He/4He dilution refrigerator opened a new chapter in experimental ultra-low temperature physics. Dilution refrigerators became essential for providing ultra-low temperature environments for nuclear demagnetisation experiments, superconducting-qubit quantum processors and highly sensitive bolometers used in fundamental physics experiments. Development of dilution refrigeration technology requires thorough understanding of the quantum mechanical processes that take place in liquid helium at ultra-low temperatures. For decades the quantum fluids research community provided valuable information to engineers and designers involved in the development of advanced dilution refrigerators. However, the lack of methods that allow the measurement of physical parameters of liquid helium during the operation of a dilution refrigerator was hindering development of the technology. Here we show direct imaging of an operational dilution refrigerator using neutron radiography. This allows direct observation of the dilution process in 3He/4He mixtures and opens an opportunity for direct measurement of the 3He concentration. We observe the refrigerator behaviour in different regimes, such as continuous circulation and single shot, and show that our method allows investigation of various failure modes. Our results demonstrate that neutron imaging applied to the study of dilution refrigeration processes can provide essential information for developers of ultra-low temperature systems. We expect that neutron imaging will become instrumental in the research and development of advanced dilution refrigerators.
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Pobell, F. Matter and Methods at Low Temperatures (Springer-Verlag, 2007).
2. Lounasmaa, O. V. Experimental Principles and Methods Below 1 K (Academic, 1974).
3. London, H. Comment. in Proc. Int. Conf. on Low Temp. Phys. (1951).
4. London, H., Clarke, G. R. & Mendoza, E. Osmotic pressure of 3He in liquid 4He, with proposals for a refrigerator to work below 1 K. Phys. Rev. 128, 1992–2005 (1962).
5. Das, P., Ouboter, R. B. de & Taconis, K. W. A realization of a London–Clarke–Mendoza type refrigerator. in Proc. Low Temp. Phys. LT9 1253–1255 (1965).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献